em算法原理(em算法详解)

综合百科2022-06-17 10:46:32佚名

em算法原理(em算法详解)

在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。


  最大期望算法经过两个步骤交替进行计算。


  第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值。


  第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。


  M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。


  

本文标签: ,算法  ,原理  ,标签  ,简介  

相关推荐

猜你喜欢

大家正在看