公式有标称误差=(最大的绝对误差)/量程x 100%,绝对误差=|示值-标准值|(即测量值与真实值之差的绝对值),相对误差=|示值-标准值|/真实值(即绝对误差所占真实值的百分比)。
误差进行下列几类的区分:
模型误差
在建立数学模型过程中,要将复杂的现象抽象归结为数学模型,往往要忽略一些次要因素的影响,对问题作一些简化。因此数学模型和实际问题有一定的误差,这种误差称为模型误差。
测量误差
在建模和具体运算过程中所用的数据往往是通过观察和测量得到的,由于精度的限制,这些数据一般是近似的,即有误差,这种误差称为测量误差。
截断误差
由于实际运算只能完成有限项或有限步运算,因此要将有些需用极限或无穷过程进行的运算有限化,对无穷过程进行截断,这样产生的误差成为截断误差。
舍入误差
在数值计算过程中,由于计算工具的限制,我们往往对一些数进行四舍五入,只保留前几位数作为该数的近似值,这种由舍入产生的误差成为舍入误差。
抽样误差
抽样误差:是指样本指标和总体指标之间数量上的差别,例如抽样平均数与总体平均数之差、抽样成数与总体成数之差(p-P)等。抽样调查中的误差有两个来源,分别为:
(1)登记性误差,即在调查过程中,由于主客观原因而引起的误差。
(2)代表性误差,即样本各单位的结构情况不足以代表总体特征而引起的误差。