实数的范围是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
1、封闭性:实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。
2、有序性:实数集是有序的,即任意两个实数、必定满足并且只满足下列三个关系之一ab。
3、传递性:实数大小具有传递性,即若a>d,且b>c,则有a>c。
4、与数轴对应:任一实数都对应与数轴上的唯一一个点;反之,数轴上的每一个点也都唯一的表示一个实数。于是,实数集与数轴上的点有着一一对应的关系。
5、稠密性:实数集具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数。